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We show that the breakdown of time-reversal invariance, confirmed by the recent polar Kerr effect mea-
surements in the cuprates, implies the existence of an anomalous Nernst effect in the pseudogap phase of
underdoped cuprate superconductors. Modeling the time-reversal-breaking ordered state by the chiral
d-density-wave state, we find that the magnitude of the Nernst effect can be sizable even at temperatures much
higher than the superconducting transition temperature. These results imply that the experimentally found
Nernst effect at the pseudogap temperatures may be due to the chiral d-density-wave ordered state with broken
time-reversal invariance.
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I. INTRODUCTION

Even after two decades of intensive research, the physics
of the high-temperature cuprate superconductors is as elusive
as ever.1 The principal mystery surrounds the underdoped
regime, which evinces a well-formed quasiparticle gap even
at temperatures well above the superconducting transition
temperature Tc. The recent observation of a nonzero polar
Kerr effect �PKE� in the underdoped YBa2Cu3Ox �YBCO�,2
which demonstrates macroscopic time-reversal �TR� symme-
try breaking in the pseudogap phase, is a forward step in
solving the pseudogap puzzle. The PKE appears roughly at
the same temperature T�, where the pseudogap develops.2

Near optimum doping, the PKE appears at a temperature
below Tc, which is consistent with the existence of a zero-
temperature quantum phase transition under the supercon-
ducting dome. This observation suggests that the TR symme-
try breaking and the pseudogap in the cuprates may have the
same physical origin, which is also unrelated to the d-wave
superconductivity itself. A similar conclusion was also
reached earlier by muon spin rotation experiments.3 In this
work we predict the existence of an anomalous Nernst effect
associated with the TR symmetry breaking, which should be
present along with the observed PKE in the underdoped cu-
prates. Our results demonstrate that the existence of the
anomalous Nernst effect at temperatures as high as the
pseudogap temperatures �see below�, where the vortex exci-
tations of the superconductor are unlikely to be present, may
imply an ordered state with broken TR symmetry in the
pseudogap regime of the underdoped cuprates.

It was proposed earlier4,5 that the idx2−y2 density-wave
�DDW� state may be responsible for the pseudogap behavior
in the underdoped cuprates. In real space, the order param-
eter for this state consists of orbital currents along the bonds
of the two-dimensional �2D� square lattice of copper atoms.
Since the currents circulate in opposite directions in any two
consecutive unit cells of the lattice, the total orbital current
averages to zero and the macroscopic TR symmetry remains
unbroken. Recently, it was shown that the admixture of a
small dxy component to the order parameter of the DDW

state breaks the global TR symmetry, producing a nonzero
Kerr signal6 in conformity with the experiments.2 The chiral
dxy + idx2−y2 �d+ id� density-wave state, as also the regular
DDW and the spin-density-wave state, has hole and electron
pockets as Fermi surfaces in its excitation spectra. Such re-
constructed small Fermi pockets are consistent with the re-
cently observed quantum oscillation in high magnetic fields
in underdoped YBCO.7–11 In this paper, we discuss an intrin-
sic anomalous Nernst effect induced by the d+ id density-
wave state as a direct consequence of the macroscopic TR
symmetry breaking and the presence of the Fermi pockets.
Because of the broken TR symmetry, the ordered state ac-
quires a Berry curvature,3 which is sizable on the Fermi sur-
faces. It is known that the nonzero Berry curvature can pro-
duce the anomalous Hall12–15 and Nernst16,17 effects in
ferromagnets. We focus here on the anomalous Nernst effect
for the high-Tc cuprates because the corresponding coeffi-
cient has been extensively measured.18–20

Nernst signal for unconventional density waves, such as
the DDW state, was studied earlier in Ref. 21 and references
therein. In these papers, however, the order parameter of the
bare DDW state was used, for which the Nernst effect was
induced by the external magnetic field. On the other hand, in
the present paper we consider the superposition of two dif-
ferent d-wave order parameters �motivated by the PKE
measurements2,6�, and the spontaneous breakdown of time-
reversal symmetry leads to the Berry curvature, which acts as
a magnetic field. Estimating the degree of TR symmetry
breaking from the PKE measurements of Ref. 2, we calculate
the expected anomalous Nernst signal in the underdoped
phase of YBCO near T�. We stress that even though we
model the pseudogap by a chiral DDW state, the basic con-
clusions are more robust; the broken TR symmetry and well-
defined Fermi surfaces, both of which have now been experi-
mentally verified, necessarily imply the anomalous Nernst
effect that should be observable. Note that recent neutron-
scattering experiments22,23 have appeared to indicate a TR
breaking state without translational symmetry breaking in the
pseudogap regime.24 We expect an anomalous Nernst effect
for such a state as well if it breaks the TR symmetry globally.
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II. BERRY CURVATURE OF THE CHIRAL DDW STATE

The order parameter of the dxy + idx2−y2 density-wave
state25 is a combination of two density waves with different
angular patterns; that is,

�ck+Q�
† ck�� = ��k + iWk����, �1�

where c† ,c are the electron creation and annihilation opera-
tors on the 2D square lattice of copper atoms, k is a 2D
momentum, Q is the momentum space modulation vector
�� ,��, and � ,� are the spin indices. Wk=

W0

2 �cos kx
−cos ky� and �k=−�0 sin kx sin ky are the order-parameter
amplitudes of the idx2−y2 and dxy density-wave components,
respectively. The imaginary part iWk of the order parameter
breaks the microscopic TR symmetry, giving rise to sponta-
neous currents along the nearest-neighbor bonds of the
square lattice. The spontaneous currents produce a staggered
magnetic flux, which averages to zero on the macroscopic
scale. The dxy component of the density wave �k leads to the
staggered modulation of the diagonal electron tunneling be-
tween the next-nearest-neighbor lattice sites. Such staggered
modulation breaks the symmetry between the plaquettes with
positive and negative circulation and, thus, breaks the mac-
roscopic TR symmetry. Such macroscopic TR symmetry
breaking may account for the nonzero PKE observed in the
recent experiments.2,6

The Hartree-Fock Hamiltonian appropriate for the mean-
field d+ id density wave is given by

H = �
k�RBZ

�k
+� �k − 	 Dk exp�i
k�

Dk exp�− i
k� �k+Q − 	
��k, �2�

where �k
+= �ck

† ck+Q
† �, �k is the free-electron band structure,

�k=−2t�cos kx+cos ky�+4t� cos kx cos ky, and 	 is the
chemical potential. The order parameter has been rewritten
as Dk exp�i
k� with the amplitude Dk=�Wk

2 +�k
2 and the

phase 
k=���−�k�+arctan�Wk /�k�, where ��x� is the step
function. In writing the Hamiltonian, the first Brillouin zone
has been folded to the magnetic or reduced Brillouin zone
�RBZ� to treat the Q= �� ,�� modulation effectively. The en-
ergy spectrum of the Hamiltonian �2� contains two bands
with eigenenergies E��k�=w0�w�k�, where w0�k�=−	

+ ��k+�k+Q� /2 and w�k�=�Fk
2 +Dk

2 with Fk= ��k−�k+Q� /2.
Berry phase is a geometric phase acquired by the wave

function when the Hamiltonian of a physical system under-
goes transformation along a closed contour in the parameter
space.26 For the d+ id Hamiltonian �2�, the relevant param-
eter space is the space of the crystal momentum k. The
eigenfunctions of the Hamiltonian are therefore k dependent,
and the overlap of two wave functions infinitesimally sepa-
rated in the k space defines the Berry-phase connection Ak
= �
n

†�k�	i�k	
n�k��, where 
n�k� is the periodic amplitude
of the Block wave function and n is the band index. The
Berry-phase connection corresponds to an effective vector
potential in the momentum space and its line integration
around a close path gives the Berry phase. The Berry curva-
ture, the Berry phase per unit area in the k space, is given by

�n�k� = �k � Ak, Ak = �
n
†�k�	i�k	
n�k�� . �3�

The Berry curvature �n�k�, thus, acts as an effective mag-
netic field in the momentum space and enters in the equa-
tions of motion of the wave packet. For a system invariant
under both time-reversal and spatial-inversion symmetries,
the Berry curvature �n�k�=0 for every k. However, the d
+ id density-wave state breaks the macroscopic TR symme-
try; therefore, the Berry curvature can acquire nonzero val-
ues.

To calculate the nonzero Berry curvature, we find the
eigenstates of the Hamiltonian �2�, which are given by

��k�= 
u��k�ei
k/2 ,v��k�e−i
k/2�, where + and − corre-
spond to the upper and lower bands with the energy disper-
sions E+�k� and E−�k�, respectively. The coefficients u��k�
and v��k� in the eigenstates 
��k� are straightforwardly ob-
tained from the matrix �2�. Substituting the eigenstates

��k� into Eq. �3�, we find ���k�=− 1

2�k
u�
2 �k�−v�

2 �k��
��k
k. In the pure DDW state, 
k=� /2 is a constant; there-
fore, ���k�=0 and there are no Berry-phase effects.
However, in the d+ id density-wave state, the phase 
k
=���−�k�+arctan�Wk /�k� depends on the values of order
parameters Wk and �k and can vary in the k space; therefore,
���k� can acquire nonzero values. Because the momentum
k is restricted to the xy plane, only the z component of
���k� can be nonzero, which we will denote as ���k�.
After some straightforward algebra, we find

���k� = �
1

2w3�k�
wk · � �wk

�kx
�

�wk

�ky

 , �4�

= �
t�0W0

w3�k�
�sin2 ky + cos2 ky sin2 kx� , �5�

where wk is a three-component vector wk= �−�k ,−Wk ,Fk�
and it enters into the Hamiltonian density in Eq. �2� as Ĥ

=w0Î+wk · �̂i. Here �̂i �i=1,2 ,3� are the Pauli matrices and Î
is the 2�2 unit matrix operating on the spinors �k

+ ,�k. We
see from Eq. �5� that the Berry curvature is nonzero only
when the amplitudes �0 and W0 of the dxy and idx2−y2 order
parameters are both nonzero. The Berry curvatures have
opposite signs in the upper and the lower bands: �+�k�
=−�−�k�. In Fig. 1, we plot the Berry curvature �+ with
respect to the momentum k for a set of parameters in the d
+ id state. We see that �+ peaks at �� �

2 , �
�
2 �, where w�k�

reaches the minimum and the corresponding points in the k
space, are the points of near degeneracy between the two
bands. The value of �+ decreases dramatically along slim
ellipses whose long axes lay on the RBZ boundary lines
ky �kx= ��, where w�k� and the band splitting are the
smallest. The peaks of the Berry curvature �� correspond to
magnetic monopoles in the momentum space.15

III. ANOMALOUS NERNST EFFECT IN THE CHIRAL
DDW STATE

In the experiments to observe the Nernst effect,16,19,20 a
temperature gradient −�T applied along, say, the x̂ direction
produces a measurable transverse electric field. The charge
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current along x̂ driven by −�T is balanced by a backflow
current produced by an electric field E. The total charge
current in the presence of E and −�T is thus given by Ji
=�ijEj +�ij�−� jT� where �ij and �ij are the electric and the
thermoelectric conductivity tensors, respectively. In the ex-
periments, J is set to zero and the Nernst signal defined as

eN � Ey/	�T	 = ��xy − S tan 
H �6�

is measured, where �xy is the Nernst conductivity defined via
the relation Jx=�xy�−�yT� in the absence of the electric field,
�=1 /�xx is the longitudinal resistance, S=Ex / 	�T	=��xx is
the thermopower, and tan 
H=�xy /�xx is the Hall angle. For
a relatively modest hole concentration away from the se-
verely underdoped regime in the cuprates, the second term in
Eq. �6� is experimentally observed to be small.19 As long as
the second term is small, ��xy completely defines the Nernst
signal; but in the most general case one should extract �xy
from the experimental data, as it was done in Refs. 16 and
19, to compare with our theory.

The Berry-phase effects have found much success in
explaining the anomalous Hall and Nernst effects in
ferromagnets.12,15–17 In the presence of an external electric
field E along the x̂ direction, the anomalous Hall current is
along the transverse ŷ direction. The anomalous dc Hall con-
ductivity is found to be

�xy = −
e2

�
�

RBZ

dkxdky

�2��2 �−�f�E−�k�� − f
E+�k��� , �7�

where f�En�=1 / 
1+exp��En�� is the Fermi distribution func-
tion at a temperature T, �=1 /kBT, and we have used �+
=−�−. Equation �7� agrees with the dc Hall conductivity of
the d+ id density wave obtained earlier using a different
approach.6,27,28 For half filling �t�=0,	=0�, when the system
is a band insulator, its value is quantized, i.e., e2 /2�� �Refs.
27 and 28� per spin component. It changes continuously as
the system deviates from half filling and the Fermi pockets
appear.6 We will see below that the anomalous Nernst effect
is zero in the case of half filling and becomes nonzero only

when there are hole and electron pockets in the spectrum.
In order to obtain the coefficient �xy, it is more convenient

to calculate the coefficient �̄xy, which determines the trans-
verse heat current Jh in response to the electric field E: Jx

h

= �̄xyEy. It is related to �xy by the Onsager relation �̄xy
=T�xy.

17,29 In the presence of the Berry curvature and the
electric field, the electron velocity acquires the additional
anomalous term �vk=eE���k�.16,17 Multiplying this veloc-
ity by the entropy density of the electron gas, we obtain the
coefficient for the transverse heat current as follows:

�̄xy = T�xy =
e

��
�
n=�

�
RBZ

dkxdky

�2��2 �n�k�sn�k� . �8�

Here s�k�=−fk ln fk− �1− fk�ln�1− fk� is the entropy density
of the electron gas, fk= f
En�k�� is the Fermi distribution
function, and the sum is taken over both bands. Using the
explicit expression for the Fermi distribution function, Eq.
�8� can be transformed to the following form:

�xy =
e

�

1

T �
n=�

�
RBZ

dkxdky

�2��2 �n�En�k�f
En�k��

− kBT log
1 − f�En�k���� . �9�

Equation �9� coincides with the corresponding expression de-
rived in Ref. 17 using the semiclassical wave packet methods
and taking into account the orbital magnetization of the
carriers.30 Relation of the transverse heat current to the en-
tropy flow was also discussed in Refs. 16 and 29. At T=0,
the carrier entropy is zero, sn�k�=0, so there is no heat cur-
rent and �xy =0. At T�0, we first consider the simple case
with t�=0 and 	=0, that is, the lower and the upper bands
are symmetric with E+�k�=−E−�k�. It is easy to check that in
this case �xy =0 because �+=−�−.

In the general case, the entropy sn�k� has peaks on the
Fermi surface and decreases dramatically away from the
Fermi surface. Because the Berry curvature �� peaks along
the RBZ boundary kx�ky = ��, the integrand in Eq. �9�
peaks at the intersections of the Fermi surface and the RBZ
boundary—the so-called “hot spots,”31,32 which were shown
earlier to be important in the calculations of the Hall coeffi-
cient in the DDW state.33 These peaks are clearly seen in Fig.
2.

From Eqs. �7�–�9�, we can show that, at low temperatures,
the Nernst conductivity �xy is related to the zero-temperature
Hall conductivity �xy through the Mott relation,34 which
yields

�xy =
�2kB

2

3e

d�xy

d	
T . �10�

Here the derivative of �xy leads to
d�xy

d	

=− e2

� �RBZ
dkxdky

�2��2 �−
��E−�−��E+��. Here ��E�� are the delta
functions. Therefore the integrand is nonzero only at the
boundary lines of the hole and electron pockets. In the case
of a band insulator �t�=0,	=0� that does not contain the
Fermi pockets, �xy� �	�=0 and the anomalous Nernst conduc-
tivity �xy =0, even though the dc Hall conductivity �7� is

xk

yk

π− π0
π−

0

π

-1

1

3

5

FIG. 1. �Color online� Logarithm of the Berry curvature �+�k�
plotted on the Brillouin zone. The Berry curvature is sharply peaked
at the points �� �

2 , �
�

2 �. The ellipses and the half circles are the
hole and the electron pockets of the d+ id state, respectively. t
=0.3 eV, t�=0.09 eV, 	=−0.26 eV, W0=0.08 eV, and �0

=0.004 eV.
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nonzero and, in fact, is quantized.6 This is because the quan-
tum Hall current carries no entropy.

For crude estimate of the Nernst signal, we choose a set
of parameters appropriate for the underdoped YBCO,35

t=0.3 eV, t�=0.09 eV, 	=−0.26 eV �corresponding to the
hole doping of about 10%�, d=1.17 nm �the distance
between consecutive 2D layers�, �=3 m� cm, W0�T�
=0.1�1−T /TW

� �1/2 eV, and �0�T�=0.0001�1−T /T�
� �1/2 eV

and numerically integrate Eq. �9�, where we made reasonable
assumptions about the transition temperatures, TW

� �150 K
�Ref. 2� and T�

� �250 K. In Fig. 3, we plot ��xy in a tem-
perature regime that is below TW

� but much higher than the
superconducting transition temperature Tc�80 K.2 Here we
have multiplied the results by 2 to account for the contribu-
tions from two spin components. As temperature drops from
TW

� , the order parameter W0�T� grows, leading to the increase
in the Nernst signal. Close to Tc, the Nernst effect would be
dominated by the mobile vortices and our calculations do not
apply there. The estimated value of ��xy at T�130 K is
about 10 nV/K. This value is about 10% of the experimen-
tally observed Nernst signals in underdoped La2−xSrxCuO4
�LSCO� and Bi2Sr2CaCu2O8+x �BSCCO� �Ref. 20� at tem-
peratures much higher than the superconducting Tc. Note that
the spontaneous Nernst signal discussed above may not be
observable through the dc current measurements20 without a
nonzero magnetic field because of the macroscopic domains

with opposite chiralities present in a sample at the zero mag-
netic field.

IV. CONCLUSION

In summary, we discuss the nonzero Berry curvature in
the d+ id density-wave state, which was proposed earlier6 to
explain the time-reversal symmetry breaking2 in the
pseudogap phase of the high-Tc superconductor YBCO. We
show that the nonzero Berry curvature, arising out of the
broken time-reversal invariance, and the existence of Fermi
pockets in the cuprates directly imply an anomalous Nernst
effect that should be measurable. We note that measurable
Nernst signals have been found in underdoped LSCO and
BSCCO �Ref. 20� even at temperatures much higher than Tc,
and we propose that a TRS breaking state, such as the chiral
DDW state, may be the origin of these signals. The anoma-
lous Nernst effect at the pseudogap temperatures will consti-
tute a further proof of an ordered state, with broken time-
reversal invariance, to be responsible for the pseudogap
phenomena in the cuprates.
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